HiRISE Overview

Laszlo Keszthelyi (Co-Investigator)
U.S. Geological Survey

MRO Science Objectives

Project Manager: Jim Graf Project Scientist: Rich Zurek
Deputy PS: Sue Smrekar

"Follow the Water" Theme

\checkmark Characterize the present climate of Mars and its physical mechanisms of seasonal and interannual climate change
\checkmark Determine the nature of complex layered terrain on Mars and identify water-related landforms
\checkmark Search for sites showing evidence of aqueous and/or hydrothermal activity
\checkmark Identify and characterize sites with the highest potential for landed science and sample return by future Mars missions
\checkmark Return scientific data from Mars landed craft

Mars Orbiters - A Comparison

Odyssey 2001
750 kg

MGS
1060 kg
$390 \times 450 \mathrm{~km}$ sun-sync frozen orbit
370×430 km sun-sync frozen orbit

Mission Overview

Launch
Aug 2005

LC-41

Interplanetary Cruise
Aug 2005 - Mar 2006

Approach and Orbit Insertion

Mar 2006

Capture Orbit --Period: 35 hrs Asc Node: 8:30 pm LMST

Aerobraking
Mar-Sep 2006

Primary Science/Relay
Nov 2006 - Dec 2010

Science Data Acquisition/Return

Name	Type	Provider	PI/Team Leader	Spatial Scale @ 300 km	$\begin{gathered} \text { Swath } \\ \text { @ } 300 \text { km } \end{gathered}$	Spectral Coverage	
HiRISE	Optical Targeted	$\begin{gathered} \mathrm{PI} \\ \text { UA-Ball } \\ \hline \end{gathered}$	A. McEwen	$30 \mathrm{~cm} / \mathrm{pixel}$	6 km	3 colors	
CRISM	Optical Targeted	$\begin{array}{r} \hline \mathrm{PI} \\ \mathrm{APL} \\ \hline \end{array}$	S. Murchie	$19 \mathrm{~m} / \mathrm{pixel}$	10 km	0.4-4.0 $\mu \mathrm{m}$	
$\begin{gathered} \text { Context } \\ \text { Imager (CTX) } \\ \hline \end{gathered}$	Optical Regional	Facility MSSS	M. Malin	$6 \mathrm{~m} / \mathrm{pixel}$	30 km	Panchromatic Minus Blue	
Shallow Radar (SHARAD)	Regional	Facility ASI	R. Seu	$\begin{gathered} <1000 \mathrm{~m}(\mathrm{w}) \\ <20 \mathrm{~m}(\mathrm{v}) \\ \hline \end{gathered}$	$\begin{gathered} 20 \mathrm{~km}(\mathrm{w}) \\ 1 \mathrm{~km}(\mathrm{v}) \\ \hline \end{gathered}$	20 MHz Center 10 MHz Bandwidth	
MARCI WA	Optical Mapping	$\begin{gathered} \mathrm{PI} \\ \mathrm{MSSS} \end{gathered}$	M. Malin	$\begin{gathered} 1 \text { to10 } \\ \mathrm{km} / \text { pixel } \\ \hline \end{gathered}$	limb-to-limb	0.25-0.75 $\mu \mathrm{m}$	
MCS	Atmospheric Mapping	$\begin{gathered} \hline \mathrm{PI} \\ \mathrm{JPL} \\ \hline \end{gathered}$	D. McCleese	~ 5 km vertical	--	$\begin{array}{r} 12-50 \mu \mathrm{~m} \\ 0.3-3.0 \mu \mathrm{~m} \\ \hline \end{array}$	
OpNav	Optical Targeted	Facility JPL-MT		$24 \mu \mathrm{rad} / \mathrm{pixel}$ Phobos/Deimos	--	0.45-0.6 $\mu \mathrm{m}$	
Electra	Radio	Facility JPL MT/MRO		--	--	UHF	
Ka Band	Radio	Facility JPL MRO		--	--	Ka hardware	

Instruments on Spacecraft

HiRISE Science Priorities

1. Achieve 1-meter spatial resolution with swath width $>3.5 \mathrm{~km}$. (Explicit Level 1 science requirements.)
2. Achieve $<0.5 \mathrm{~m}$ stereo vertical precision. (Interpretation of Level 1 science requirement.)
3. Distinguish and measure color and albedo variations

Comparison of Remote Sensing by MGS, Mars Odyssey, Mars Express (MEX), and MRO

SpatialScale	Wavelength (microns) Visible Visible - Near Infrared		Thermal
			MGS-TES
1 km			
300 m		MEX-OMEGA	
100 m		CRISM-Survey	DY- EMHS
30 m		CRISM	
10 m	THEMIS-VIS MEX-HPSC		
3 m	MGS-MOC		
1 m			
0.3 m	HiRISE		

MRO High-Resolution Observing Block

HiRISE Capabilities

, HiRISE, Capabilities

Simulation of a MIRISE Image over a portion of the Grand Canyon View is from 500 km range, MRO'
Primary Sclence Orbit will be $255 \times 320 \mathrm{~km}$, so swath width over Mars will be from 5.1 to 6.4 km . (A) Landsat image showing the swath width. nominal length (could be up to 65,000 pixels) and color coverage The blowup (B) is an al photo showing the location of (C) a simulated HIRISE IMage ($50 \mathrm{~cm} / \mathrm{pixel}$) incorporating the predicted telescope performance (MT)

IKONOS image of sedimentary layers near Moab Utah, $4 \mathrm{~m} /$ pixel.

Telescope Components

HiRISE Focal Plane Assembly

- 14 CCDs (2048×128 pixels)

A 10 CCDs Fom Red Channel (20,000 pixels)
2 CCDS Form Blue-Green Channel (4000 pixels)
a CCDS Form NIR Channel (4000 pixels)

Key Science Issues for HiRISE

IS there water near the surface today?
Ongin of gullies
Ages of gulies, dunes, patterned ground
When and where have there been long hyed bodies of water?
Oceans, lakes?
What a the total heyentoryo owater and how has it cycled?
Slood discharges, volcane processes
How has clinate varled?
Polat layers, CO , nuentory
Were there thick lee sheets?

Ancient lakes and seas on Mars: Fact or Fantasy?

Landing Sites:

Past Landing Sites, Vking, Pathfinder, MER, Beagle-2
Detaled orbital views may solve mysteries, lead
to new interpretations
Future landing sites
Candidate landing site evaluations for PHOENIX,
MSL, sample return?
Active surface missions durng MRO
PHOENIX, MSL
Electra relay on MRO
Meter-scale topography will be essential to evaluate landing hazards and rover trafficability:

Stereo Data Acquisition

Synthetic oblique view of Gusev Crater, derived from DEM by R. Kirk.

High-Resolution DEMs Will Enable Quantitative Geomorphology

Controls on bedrock incision in the Grand Canyon are being studied with high-resolution DEMs by J. Pelletier et al.; see http://geomorphology.geo.arizona.edu//geomorphology.html

Other things being equal, one effect of lithology is to increase stream gradients in strongly resistant bedrock such as in Hack's classic example of steeper gradients in sandstone than in shale of the Shenandoah Valley, Virginia. (From J. Pelletier's class notes for Introduction to Geomorphology)

Repeat Imaging of Gullies: best to match seasons to detect changes, or use DEMs to simulate any viewing/illumination

Age Constraints on Gullies

Apron Covering Dunes

Apron on Polygons

1. Lack of small craters:

Are they primary or secondary craters?
$<$ a few millions years or less than ~ 100 million years?
2. Superimposed over dunes and patterned ground--how old are they?

Origin(s) of Layered Sedimentary Rocks

Monitoring Yearly Changes in S. Polar
Residual $\mathrm{CO}_{2} \mathrm{Cap}$

Flases

Polar Layers and Climate History

Most Mars researchers believe that he polar layered deposits are the esil of y nations in the anounts of dust and water ice deposited over many clmate cycles, but the anount of the needed to form ndividual layers remans a major uneertanty. Studies of the thickness of polar layers are limited by inage resoluton and color dat Is needed to distingush dust ice and sand Analyss of HIRIS E data shoud result in abetter understanding of the timescales involved in the deposition of the layered deposits and provide important informatoon regardig he cinate history of Mars.

Glaciation on Mars?

Large-scale olactation K argel and Strom, 19921 requires atmospheric transport of large quantities of water, and implies that major climatic change has occurred. Glacial noraines are very poorly sorted deposits licluding large boulders, which should be discernable to MIRISE. Are the ridges west of Arsia Mons (right) glacial moraines? (THEMIS visible image, 18 mpixel, inage 18 km wide)

[^0]
Origin of Vastitas Borealis Formation

- Surface layer buries cratered northern plains.
: Many interpretations have been published.
- If ocean sediments, should be fine-grained except for ice-rafted boulders
- Presence of neter-scale rocks would be more consistent with flood deposits.

Possible outlines of northern oceans. Credit: MOLA team and Head et al. (1999).

Volcano-Water and Volcano-Climate Interactions

Possible rootless cones on Mars (M08-1962). Rootless cones form when lava interacts with water under the flow, and are not primary vents for lava.

Rows of lava cones lining the fissure from which the Laki lava flow erupted in 1783-1784 in Iceland. This was the largest lava eruption for which detailed written records exist, but was tiny compared with geologically recent Martian eruptions. The gases from this eruption cooled the climate across the entire Northern Hemisphere (Thordarson et al., 1996). The cones in this picture are about 10 meters tall (30 feet).

Pathfinder: Are 1-2 m high ridges due to 2-3 billion years old fluvial morphology?

m11-2414

New Discoveries

Anythne MOC can do, MIRISE can do better, ecep dong il hrst The most mportan new results Ton HIRISE will be new discoveries features and phenomena not yet detected on Mars.

River delta meanders? (Malin and Edgett 2003)

Recent surface mantle poleward of 30° latitudes [Mustard et al., 2001] (M20-00144)

[^0]: (C) 1998 MJadsworth Publishing Company/ITP

